Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium

نویسندگان

  • M Sato
  • T Z Wong
  • R D Allen
چکیده

Magnetic sphere viscoelastometry, video microscopy, and the Kamiya double chamber method (Kamiya, N., 1940, Science [Wash. DC], 92:462-463.) have been combined in an optical and rheological investigation of the living endoplasm of Physarum polycephalum. The rheological properties examined were yield stress, viscosity (as a function of shear), and elasticity. These parameters were evaluated in directions perpendicular; (X) and parallel (Y) to the plasmodial vein. Known magnetic forces were used for measurements in the X direction, while the falling ball technique was used in the Y direction (Cygan, D.A., and B. Caswell, 1971, Trans. Soc. Rheol. 15:663-683; MacLean-Fletcher, S.D., and T.D. Pollard, 1980, J. Cell Biol., 85:414-428). Approximate yield stresses were calculated in the X and Y directions of 0.58 and 1.05 dyn/cm2, respectively. Apparent viscosities measured in the two directions (eta x and eta y) were found to fluctuate with time. The fluctuations in eta x and eta y were shown, statistically, to occur independently of each other. Frequency correlation with dynamoplasmograms indicated that these fluctuations probably occur independently of the streaming cycle. Viscosity was found to be a complex function of shear, indicating that the endoplasm is non-Newtonian. Plots of shear stress vs. rate of shear both parallel and perpendicular to the vein, showed that endoplasm is not a shear thinning material. These experiments have shown that living endoplasm of Physarum is an anisotropic viscoelastic fluid with a yield stress. The endoplasm appears not to be a homogeneous material, but to be composed of heterogeneous domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Changing Pattern of Birefringence in Plasmodia of the Slime Mold, Physarum Polycephalum

Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of e...

متن کامل

The density of the cell sap and endoplasm of Nitellopsis and Chara.

We measured the densities of the cell sap, endoplasm and cell wall of Nitellopsis obtusa and Chara corallina using interference microscopy, refractometry, immersion refractometry, equilibrium sedimentation and chemical microanalysis techniques. These values are important for the determination of many rheological properties of the cytoplasm as well as for understanding buoyancy regulation, disp...

متن کامل

Relation of cytoplasmic calcium to contractility in Physarum polycephalum.

In a dumbbell-shaped plasmodium of Physarum polycephalum showing active shuttle streaming Ca was precipitated with potassium pyroantimonate (K[Sb(OH)6]), and the distribution of Ca between the cytoplasm and cellular organelles, especially vacuoles, was examined by electron microscopy. The contracting half-mass, where many empty vacuoles were present, was rich in the small Ca precipitates locate...

متن کامل

The Consistency of Ameba Cytoplasm and Its Bearing on the Mechanism of Ameboid Movement I. An Analysis of Endoplasmic Velocity Profiles of Chaos chaos

An accurate and detailed knowledge of the consistency 1 of the cytoplasm of different regions of the ameba during locomotion would seem to be of primary importance in understanding the mechanism of ameboid movement. Unfortunately, no such knowledge exists. In fact, it will be shown in this and in succeeding papers that the rheological information now available on ameba cytoplasm is at best frag...

متن کامل

Protoplasmic Streaming of a Slime Mold, Physarum Polycephalum* Ii . Theoretical Treatment 01~ the Electric Potential Rhythm by Uichiro Kishimoto

The electric potential difference (1 to 15 Inv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of back and forth protoplasmic streaming along the strand. When atmospheric pressure at a part of the plasmodium is increased (about 10 cm. H~O), the dectric potential at this part becomes positive (0 to 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1983